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Introduction

Prefix, Postfix, Infix

In this work, we aim to synthesize The generated LTL formulas can quickly grow in size
natural language descriptions into and complexity
linear temporal logic (LTL) — parsing such formulas “as they are” can be very
specifications using neural language hard
models. - many parsers convert the formulas into a prefix _
. L o . Error Analysis
or postfix representation in order to simplify parsing

o Exact match scores achieved using BART on the in .
Data SynthESIS distribution set Predicted: (!p14 U ( p5 & p10 & p15 & p2 ) & F ( p14 ))

, — Infix: (!p11U(p10&p14 &p12)& F (p11)) 1 1 . Correct: ( ! p15U (p5& pl0 & pl4 & p2) &F(pl5))
We used following classes of primitive Prefix: & U ! p11 & & p10 p14 p12 F p11 | - English: Visit p5, p10, p14, p15 and p2 stopping by
rules to synthesize the training data: Postfix: p11 ! p10 p14 & p12 & U p11 F & 07 - | I - ~ multiples of 3 last.

w

- Eventually 0
Predicted: (! p7 U (p4 & p10 & p12 & pl2) & F(p7))

* Order Trainin
C t: (! p7 U 4&pl0&pl2) &F(p7
e Arithmetic g 0.25 orrect: (! p (p4 &p pl2) (p7))

: ) English: Visit p4, p10, p12 and p7 stopping by even
 Redirection We trained a BART [1] using the original 0 numbered locations first.

Arithmetic

e R parameters introduced in their paper for 10 m Infix_m Prefix = Postfix Observations
Compositional Generalization epochs. Training was done using two NVIDIA E h T,
xact match scores achieved using on the

To evaluate the model’s A100 8008b GPUs. | compzsitifcfa.nfs\l ste)t: Edm D(zx(a;)ct “‘3“*;;: ic ut:;nccard * Using a postfix representation achieved
compositional generalization We trained separate models for postfix, 1 oeticient) and BC (bice Coetlicien the best performance with the prefix
Capabi“tiesl we designed our test set preflx and infix representations for LTL. representation not falling too far behind
o o tons of the armithe
of combinations of the primitive rules Evaluation Metrics . * The mlflx represlenltatlonhappearT to

| struggle particularly with examples
used abO\{e. . Jaccard Similarity: ~ Where, . ?g P th t.y P
-In-Domain Generalization (1000) AN B 0.25 INVOIVING arithmetic
Combinations of rules (2750) 1A U B A: the set of all subformulas in
oCompositionS of the same rule(’] 500) Dice Similarity: th-e predicted formula | o NS E - - . e The model does not appear to be able

|A N B B: the set of all subformulas in to generalize compositionally
* G4+ 1B the correct formula
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Arithmetic Visit p0. pl and p3 stopping by prime ('POUP2&Fp0)&(IplUp2 &Fpl) * Add a human teedback loop.
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